KESEIMBANGAN BENDA TEGAR
1. TITIK BERAT
ATAU PUSAT GRAVITASI
Sebelumnya kita sudah mempelajari
konsep pusat massa
dan mengoprek persamaan untuk menentukan posisi pusat massa suatu benda. Kali
ini kita akan berkenalan dan jalan-jalan bersama titik berat atau pusat gravitasi. Konsep titik berat ini hampir sama dengan pusat massa.
Sengaja mengulas pusat massa terlebih dahulu, sebelum membahas titik berat.
Sebelum mempelajari titik berat, alangkah baiknya jika kita pahami kembali
konsep benda tegar dan gaya gravitasi yang bekerja pada suatu benda tegar.
A. Konsep Benda
Tegar
Sebelum melangkah lebih jauh,
terlebih dahulu gurumuda bahas kembali konsep benda tegar. Tujuannya biar
dirimu lebih nyambung dengan penjelasan mengenai titik berat.
Dalam ilmu fisika, setiap benda bisa
kita anggap sebagai benda tegar (benda kaku). Benda tegar itu cuma bentuk ideal
yang membantu kita menggambarkan sebuah benda. Bagaimanapun setiap benda dalam
kehidupan kita bisa berubah bentuk (tidak selalu tegar/kaku), jika pada benda
tersebut dikenai gaya yang besar. Setiap benda tegar dianggap terdiri dari
banyak partikel alias titik. Partikel – partikel itu tersebar di seluruh bagian
benda. Jarak antara setiap partikel yang tersebar di seluruh bagian benda
selalu sama.
Untuk membantumu lebih memahami
konsep benda tegar, lihat ilustrasi ini. Amati gambar di bawah ini.
Ini gambar sebuah benda (contoh).
Benda ini bisa kita anggap tersusun dari banyak partikel. Pada gambar, partikel
– partikel ditandai dengan titik hitam. Seharusnya semua bagian benda itu
dipenuhi dengan titik hitam, tapi nanti malah gambarnya jadi hitam semua.
Maksudnya adalah menunjukkan partikel-partikel atau titik-titik.
Benda ini kita anggap terdiri dari
partikel-partikel. Partikel-partikel itu diwakili oleh titik hitam. Tanda panah
yang berwarna biru menunjukkan arah gaya gravitasi yang bekerja pada tiap-tiap
partikel. Seandainya benda kita bagi menjadi potongan-potongan yang sangat
kecil, maka satu potongan kecil itu = satu partikel. Jumlah partikel sangat
banyak dan masing-masing partikel itu juga punya massa. Secara matematis bisa
ditulis sebagai berikut :
m1 = partikel 1, m2
= partikel 2, m3 = partikel 3, m4 = partikel 4, m5
= partikel 5, ……,
mn = partikel terakhir.
Jumlah partikel sangat banyak, lagian kita juga tidak tahu secara pasti ada
berapa jumlah partikel. Untuk mempermudah, maka kita cukup menulis titik-titik
(….) dan n. Simbol n melambangkan partikel yang terakhir.
Gaya gravitasi bekerja pada
masing-masing partikel itu. Secara matematis bisa kita tulis sebagai berikut :
Gaya gravitasi yang bekerja pada
partikel = gaya berat partikel
m1g = w1 =
gaya gravitasi yang bekerja pada partikel 1
m2g = w2 =
gaya gravitasi yang bekerja pada partikel 2
m3g = w3 =
gaya gravitasi yang bekerja pada partikel 3
m4g = w4 =
gaya gravitasi yang bekerja pada partikel 4
m5g = w5 =
gaya gravitasi yang bekerja pada partikel 5
Dan seterusnya………………….
Mng = wn =
gaya gravitasi yang bekerja pada partikel terakhir
Apabila benda berada pada tempat di
mana nilai percepatan gravitasi (g) sama, maka gaya berat untuk setiap partikel
bernilai sama. Arah gaya berat setiap partikel juga sejajar menuju ke permukaan
bumi. Untuk mudahnya bandingkan dengan gambar di atas. Untuk kasus seperti ini,
kita bisa menggantikan gaya berat pada masing-masing partikel dengan sebuah
gaya berat tunggal (w = mg) yang bekerja pada titik di mana pusat
massa benda berada. Jadi gaya berat ini mewakili semua gaya berat partikel.
Titik di mana gaya berat bekerja (dalam hal ini pusat massa benda), di sebut
titik berat. Nama lain dari titik berat adalah pusat gravitasi.
Keterangan :
w
= gaya berat = gaya gravitasi yang bekerja pada benda
m = massa benda
g
= percepatan gravitasi
Bentuk benda simetris, sehingga
pusat massa dengan mudah ditentukan. Pusat massa untuk benda di atas tepat
berada di tengah-tengah. Jika bentuk benda tidak simetris atau tidak beraturan,
maka pusat massa benda bisa ditentukan menggunakan persamaan (persamaan untuk
menentukan pusat massa benda ada di pokok bahasan pusat massa).
Jika benda berada pada tempat yang
memiliki nilai percepatan gravitasi (g) yang sama, maka gaya gravitasi bisa
dianggap bekerja pada pusat massa benda itu. Untuk kasus seperti ini, titik
berat benda berada pada pusat massa benda.
Perlu diketahui bahwa penentuan
titik berat benda juga perlu memperhatikan syarat-syarat keseimbangan. Untuk
kasus di atas, titik berat benda harus terletak pada pusat massa benda, agar
syarat 1 terpenuhi
Syarat 2 mengatakan bahwa sebuah
benda berada dalam keseimbangan statis jika tumlah semua torsi yang bekerja
pada benda = 0. Ketika titik berat berada pada pusat massa, lengan gaya = 0.
Karena lengan gaya nol, maka tidak ada torsi yang dihasilkan oleh gaya berat
(Torsi = gaya x lengan gaya = gaya berat x 0 = 0 ). Syarat 2 terpenuhi.
B. Titik Berat
Benda
Pada pembahasan sebelumnya, kita
menganggap titik berat benda terletak pada pusat massa benda tersebut. Hal ini
hanya berlaku jika benda berada di tempat yang memiliki percepatan gravitasi
(g) yang sama. Benda yang berukuran kecil bisa memenuhi kondisi ini, tetapi
benda yang berukuran besar tidak. Demikian juga benda yang diletakkan miring
(lihat contoh di bawah).
Bagaimanapun, percepatan gravitasi
(g) ditentukan oleh jarak dari pusat bumi. Bagian benda yang lebih dekat dengan
permukaan tanah (maksudnya lebih dekat dengan pusat bumi), memiliki g yang
lebih besar dibandingkan dengan benda yang jaraknya lebih jauh dari pusat bumi.
Untuk memahami hal ini, amati ilustrasi di bawah ini.
Sebuah balok kayu diletakkan miring.
Kita bisa menganggap balok kayu tersusun dari potongan-potongan yang sangat
kecil. Potongan-potongan balok yang sangat kecil ini bisa disebut sebagai
partikel alias titik. Massa setiap partikel penyusun balok sama. Bentuk balok
simetris sehingga kita bisa menentukan pusat massanya dengan mudah. Pusat massa
terletak di tengah-tengah balok (lihat gambar di atas).
Karena semakin dekat dengan pusat
bumi, semakin besar percepatan gravitasi, maka partikel penyusun balok yang
berada lebih dekat dengan permukaan tanah memiliki g yang lebih besar.
Sebaliknya, partikel yang berada lebih jauh dari permukaan tanah memiliki g
lebih kecil. Pada gambar di atas, partikel 1 yang bermassa m1
memiliki g lebih besar, sedangkan partikel terakhir yang bermassa mn
memiliki g yang lebih kecil. Huruf n merupakan simbol partikel terakhir. Jumlah
partikel sangat banyak dan kita juga tidak tahu secara pasti berapa jumlah
partikel, sehingga cukup disimbolkan dengan huruf n. Lebih praktis.
Karena partikel yang bermassa m1
memiliki g lebih besar, maka gaya berat yang bekerja padanya lebih besar
dibandingkan dengan partikel terakhir. Jika kita amati bagian balok, dari m1,
hingga mn, tampak bahwa semakin ke atas, jarak bagian balok-balok
itu dari permukaan tanah semakin jauh. Tentu saja hal ini mempengaruhi nilai g
pada masing-masing partikel penyusun balok tersebut. karena massa partikel
sama, maka yang menentukan besar gaya berat adalah percepatan gravitasi (g).
semakin ke atas, gaya berat (w) setiap partikel semakin kecil.
Bagaimana-kah titik berat balok di
atas ? Titik berat alias pusat gravitasi balok tidak tepat berada pada pusat
massanya. Titik berat berada di bawah pusat massa balok. Hal ini disebabkan
karena gaya berat partikel-partikel yang berada di sebelah bawah pusat massa
balok (partikel-partikel yang lebih dekat dengan permukaan tanah) lebih besar
daripada gaya berat partikel-partikel yang ada di sebelah atas pusat massa
(partikel-partikel yang lebih jauh dari permukaan tanah).
Hampir semua benda yang kita
pelajari berukuran kecil sehingga kita tetap menganggap titik berat benda
berhimpit dengan pusat massa. Memang jarak antara setiap partikel dari pusat
bumi (dari permukaan tanah), berbeda-beda. Tapi karena perbedaan jarak itu
sangat kecil, maka perbedaan percepatan gravitasi (g) untuk setiap partikel
tidak terlalu besar. Karenanya, perbedaan percepatan gravitasi bisa diabaikan.
Kita tetap menganggap setiap bagian benda memiliki percepatan gravitasi yang
sama.
2. KESEIMBANGAN
BENDA TEGAR
Kesetimbangan adalah suatu kondisi
benda dengan resultan gaya dan resultan momen gaya sama dengan nol.
Kesetimbangan biasa terjadi pada :
- Benda yang diam (statik), contoh : semua bangunan gedung, jembatan, pelabuhan, dan lain-lain.
- Benda yang bergerak lurus beraturan (dinamik), contoh : gerak meteor di ruang hampa, gerak kereta api di luar kota, elektron mengelilingi inti atom, dan lain-lain.
Benda tegar adalah benda yang tidak
berubah bentuknya karena pengaruh gaya dari luar.
Kesetimbangan benda tegar dibedakan
menjadi dua:
- Kesetimbangan partikel
- Kesetimbangan benda
A. Keseimbangan
Partikel
Partikel adalah benda yang ukurannya
dapat diabaikan dan hanya mengalami gerak translasi (tidak mengalami gerak
rotasi).
Syarat kesetimbangan partikel SF =
0 à SFx = 0 (sumbu X)
SFy = 0 (sumbu Y)
B. Keseimbangan
Benda
Syarat kesetimbangan benda: SFx
= 0, SFy = 0, tS = 0
Momen gaya merupakan besaran vektor
yang nilainya sama dengan hasil kali antara gaya dengan jarak dari titik poros
arah tegak lurus garis kerja gaya.
Dirumuskan: t = F . d
Putaran momen gaya yang searah
dengan putaran jarum jam disebut momen gaya positif, sedang yang berlawanan
putaran jarum jam disebut momen gaya negatif.
Momen kopel adalah momen gaya yang
diakibatkan pasangan dua gaya yang sama besarnya dan arahnya berlawanan tetapi
tidak segaris kerja.
Benda yang dikenai momen kopel akan
bergerak rotasi terus menerus.
Contoh Soal
- Sebuah roda mamiliki massa 13 kg dan jari – jari 1 m. bertumpu dilantai dan bersandar pada anak tangga yang tingginya 0,6 m dari lantai seperti pada gambar. Tentukan gaya mendatar F minimum untuk mengungkit roda jika g = 10 m/s2!
Diketahui : m = 13 kg g = 10 m/s2
R = 1m
h = 0,6 m
ditanyakan : F min…..?
jawab : W = m .g
= 13.10
= 130 N
l1 = R- h
= 1 – 0,6
= 0,4
l2 = Ö(R2 – l12)
= Ö(12 – 0,42)
= Ö(1 – 0,16)
= Ö0,84
tS = 0
t1 + t2 = 0
F . l1 – W . l2
= 0
F . 0,4 – 130 . Ö0,84 = 0
F = (130Ö0,84)/0,4
= 325Ö0,84 N
2.
Suatu batang pemikul AB panjangnya
90 cm (berat diabaikan) dipakai untuk memikul beban A dan B masing – masing
beratnya 48 N dan 42 N. supaya batang setimbang, orang harus memikul (menumpu)
di C. maka tentukan jarak AC!
Diketahui : batang pemikul AB = 90
cm
FA = 48 N
FB = 48 N
Ditanyakan : Jarak AC…?
Jawaban : misal jarak AC adalah x
maka BC adalah 90 – x
tS = 0
tA + tB = 0
-WA . lA + WB
. lB = 0
-48x + 42 (90 – x) = 0
-48x + 3780 – 42x = 0
-90x = 3780
x = 3780/90 = 42 cm
3. KESEIMBANGAN
STATIS
Keseimbangan statis yaitu gaya –
gaya yang bekerja pada partikel menyebabkan partikel diam tidak bergerak.
A. Keseimbangan
Statis Translasi
Keseimbangan statis
adalah kondisi tertentu dari kon disi dinamis yang memenuhi
persamaan dari Hukum Newton II :
S F = m . a (
1 – 1 ) yaitu bahwa percepatanya, a = 0, berarti merupakan kondisi yang
diam atau bergerak dengan kecepatan konstan. Sehingga persamaan menjadi :
S F = 0
( 1 – 2 )
S F : jumlah
dari vektor gaya -gaya luar yang dikenakan (bekerja) pada benda, dalam
hal ini pada batang atau link. Gaya luar termasuk gaya aksi dan gaya reaksi,
gambar 1a
( a
)
( b
)
( c )
Gambar-1.1, Gaya-gaya luar ( aksi dan
reaksi ) benda yang dalam keseimbangan.
Adalah benda yang
mendapat gaya aksi F1 dan F2,
gambar-1b, reaksi yang terjadi pada benda untuk mendacapai keseimbangan
statis, dan gambar-1c poligon gaya yang melukiskan keseimbangan gaya, dari
persamaan (1 -2). Gaya resultan adalah jumlah vektor dari gaya-gaya (gaya
luar), berarti keseimbangan statis terjadi bila gaya resultan adalah nol.
B. Keseimbangan
Statis Rotasi
Keseimbangan rotasi dari hokum
Newton II :
SM = I . a (
1 – 3 )
Statis rotasi tercapai bila benda
diam atau bergerak dengan putaran konstan, persamaan (1 -3) menjadi :
SM = 0
( 1 – 4 )
momen statis yang dihasilkan oleh
gaya-gaya luar terhadap titik putar adalah nol.
Pada gambar-1.2a, menunjukkan batang
yang dikenai gaya aksi F1 dan F2, batang dipen di A
dan di tumpu rol di B. Ilustrasi dari persamaan (1-4) adalah: bila titik
putar di B, maka keseimbangan statis rotasi mendapatkan reaksi RA,
gambar-1.2b. Untuk titik putar di A keseimbangan statis rotasi
mendapatkan reaksi di B, gambar-1.2c.
Dalam hal ini batang juga seimbang
dalam translasi, yang memenuhi persamaan (1 -2), gambar 1.2d.
4. SYARAT –
SYARAT KESEIMBANGAN STATIS BENDA TEGAR
Sekarang mari kita melangkah lebih
jauh. Kali ini kita mencoba melihat faktor-faktor apa saja yang membuat benda
tetap dalam keadaan diam.
A. Syarat
Pertama
Dalam hukum II Newton, kita belajar
bahwa jika terdapat gaya total yang bekerja pada sebuah benda (benda
dianggap sebagai partikel tunggal), maka benda akan bergerak lurus, di mana
arah gerakan benda = arah gaya total. Kita bisa menyimpulkan bahwa untuk
membuat sebuah benda diam, maka gaya total harus = 0. Gaya total = Jumlah semua
gaya yang bekerja pada benda.
Secara matematis bisa kita tulis
seperti ini :
Persamaan Hukum II Newton :
Ketika sebuah benda diam, benda
tidak punya percepatan (a). Karena percepatan (a) = 0, maka persamaan di atas
berubah menjadi :
Jika gaya-gaya bekerja pada arah
horizontal saja (satu dimensi), maka kita cukup menggunakan persamaan 1. Huruf
x menunjuk sumbu horizontal pada koordinat kartesius (koordinat x, y, z). Jika
gaya-gaya bekerja pada arah vertikal saja (satu dimensi), maka kita cukup
menggunakan persamaan 2. Huruf y menunjuk sumbu vertikal pada koordinat
kartesius.
Apabila gaya-gaya bekerja pada
bidang (dua dimensi), maka kita menggunakan persamaan 1 dan persamaan 2.
Sebaliknya jika gaya-gaya bekerja dalam ruang (tiga dimensi), maka kita
menggunakan persamaan 1, 2 dan 3.
Gaya itu besaran vektor (besaran
yang punya nilai dan arah). Dengan berpedoman pada koordinat kartesius (x, y,
z) dan sesuai dengan kesepakatan bersama, jika arah gaya menuju sumbu x negatif
(ke kiri) atau sumbu y negatif (ke bawah), maka gaya tersebut bernilai negatif.
Kita cukup menulis tanda negatif di depan angka yang menyatakan besar gaya.
Contoh :
Amati gambar di bawah
Keterangan gambar :
F = gaya tarik
Fg = gaya gesek
N = gaya normal
w = gaya berat
m = massa
g = percepatan gravitasi
Benda ini dikatakan berada dalam
keadaan diam, karena jumlah semua gaya yang bekerja pada-nya = 0. Sekarang coba
kita tinjau setiap gaya yang bekerja pada benda.
Gaya yang bekerja pada komponen
horisontal (sumbu x) :
Gaya tarik (F) dan gaya gesek (fg)
mempunyai besar yang sama. Arah kedua gaya ini berlawanan. Arah gaya tarik ke
kanan atau menuju sumbu x positif (bernilai positif), sebaliknya arah gaya
gesekan ke kiri atau menuju sumbu x negatif (bernilai negatif). Karena besar
kedua gaya sama (ditandai dengan panjang panah) dan arahnya berlawanan, maka
jumlah kedua gaya ini = 0.
Gaya yang bekerja pada komponen
vertikal (sumbu y) :
Pada komponen vertikal (sumbu y),
terdapat gaya berat (w) dan gaya normal (N). Arah gaya berat tegak lurus menuju
pusat bumi atau menuju sumbu y negatif (bernilai negatif). Sedangkan arah gaya
normal berlawanan dengan arah gaya berat atau menuju sumbu y positif (bernilai
positif). Karena besar kedua gaya ini sama sedangkan arahnya berlawanan maka
kedua gaya saling melenyapkan.
Benda pada contoh di atas berada
dalam keadaan seimbang atau diam, karena gaya total atau jumlah semua gaya yang
bekerja pada benda, baik pada sumbu horisontal maupun sumbu vertikal = 0.
Contoh 2 :
Amati gambar di bawah
Pada benda ini juga bekerja gaya
berat dan gaya normal, seperti benda pada contoh 1. Tapi tidak menggambar komponen
gaya berat dan gaya normal, karena kedua gaya itu saling melenyapkan. Pada
kedua sisi benda dikerjakan gaya seperti yang tampak pada gambar. Besar kedua
gaya sama, tetapi berlawanan arah. Apakah benda akan tetap dalam keadaaan
seimbang atau diam ? tentu saja tidak, karena benda akan berotasi.
Untuk membantumu memahami hal ini,
coba letakkan sebuah buku di atas meja. Selanjutnya, berikan gaya pada kedua
sisi buku itu, seperti yang ditunjukkan pada gambar. Ketika kita memberikan
gaya pada kedua sisi buku, itu sama saja dengan kita memutar buku. Tentu saja
buku akan berputar atau berotasi. Dalam hal ini buku tidak berada dalam keadaan
seimbang lagi.
Berdasarkan contoh 2 ini, bisa
dikatakan bahwa untuk membuat sebuah benda tetap diam, syarat 1 saja belum cukup.
Kita masih membutuhkan syarat tambahan.
B. Syarat Kedua
Dalam dinamika rotasi, kita belajar
bahwa jika terdapat torsi total yang bekerja pada sebuah benda (benda dianggap
sebagai benda tegar), maka benda akan melakukan gerak rotasi.
Dengan demikian, agar benda tidak berotasi (baca : tidak bergerak), maka torsi
total harus = 0. Torsi total = jumlah semua torsi yang bekerja pada benda.
Secara matematis bisa ditulis sebagai berikut :
Persamaan Hukum II Newton untuk
gerak rotasi :
Ketika sebuah benda diam (tidak
berotasi), benda tidak punya percepatan sudut (alfa). Karena percepatan sudut =
0, maka persamaan di atas berubah menjadi :
Contoh 1 :
Amati gambar di bawah. Dua benda,
masing-masing bermassa m1 dan m2 diletakkan di atas papan
jungkat-jungkit (m1 = m2). Lengan gaya untuk gaya berat m1
= l1, sedangkan lengan gaya untuk gaya berat m2 = l2
(l1 = l2). Papan jungkat-jungkit tidak bergerak atau
berada dalam keadaan seimbang, karena m1 = m2 dan l1
= l2. Arah rotasi itu sengaja gurumuda gambar, untuk menunjukkan
kepada dirimu bahwa jungkat-jungkit juga bisa berotasi.
Gambar di atas disederhanakan
sehingga yang kita tinjau hanya komponen gaya, lengan gaya dan torsi yang
bekerja pada benda.
Sekarang kita tinjau torsi yang
bekerja pada papan jungkat-jungkit di atas. Jika kita menganggap gaya F1
bisa menyebabkan papan jungkat jungkit bergerak ke bawah, maka arah putaran
papan (sebelah kiri) berlawanan dengan arah gerakan jarum jam. Karena arah
putaran berlawanan dengan jarum jam, maka Torsi 1 (bagian kiri) bernilai
positif.
Demikian juga, apabila kita
menganggap gaya F2 bisa menyebabkan papan berputar maka arah putaran
papan (bagian kanan) searah dengan putaran jarum jam. Karena arah putaran papan
searah dengan gerakan jarum jam, maka torsi 2 bernilai negatif. Tanda positif
dan negatif ini cuma kesepakatan saja.
5. JENIS – JENIS KESEIMBANGAN
Seperti yang sudah dijelaskan pada
pokok bahasan syarat-syarat
keseimbangan statis, sebuah benda berada dalam
keadaan diam jika tidak ada gaya total dan torsi total yang bekerja pada benda
tersebut. Dengan kata lain, jika gaya total dan torsi total = 0, maka benda
berada dalam keseimbangan statis (statis = diam). Tidak semua benda yang kita
jumpai dalam kehidupan sehari-hari selalu berada dalam keadaan diam. Mungkin
pada mulanya benda diam, tetapi jika diberi gangguan (misalnya ditiup angin)
benda bisa saja bergerak. Persoalannya, apakah setelah jalan-jalan, benda itu
kembali lagi ke posisinya semula atau benda sudah bosan di posisi semula
sehingga malas balik. Hal ini sangat bergantung pada jenis keseimbangan benda
tersebut.
Jika sebuah benda yang sedang diam
mengalami gangguan (maksudnya terdapat gaya total atau torsi total yang bekerja
pada benda tersebut), tentu saja benda akan bergerak (berpindah tempat).
Setelah bergerak, akan ada tiga kemungkinan, yakni : (1) benda akan kembali ke
posisinya semula, (2) benda berpindah lebih jauh lagi dari posisinya semula,
(3) benda tetap berada pada posisinya yang baru.
Apabila setelah bergerak benda
kembali ke posisinya semula, benda tersebut dikatakan berada dalam keseimbangan
stabil (kemungkinan 1). Apabila setelah bergerak benda bergerak lebih jauh
lagi, maka benda dikatakan berada dalam keseimbangan labil atau tidak stabil
(kemungkinan 2) Sebaliknya, jika setelah bergerak, benda tetap berada pada
posisinya yang baru, benda dikatakan berada dalam keseimbangan netral
(kemungkinan 3) Untuk lebih memahami persoalan ini, alangkah baiknya jika
dijelaskan satu persatu.
A. Keseimbangan
stabil
Misalnya mula-mula benda diam, dalam
hal ini tidak ada gaya total atau torsi total yang bekerja pada benda tersebut.
Jika pada benda dikerjakan gaya atau torsi (terdapat gaya total atau torsi
total pada benda itu), benda akan bergerak. Benda dikatakan berada dalam
keseimbangan stabil, jika setelah bergerak, benda kembali lagi ke posisi
semula. Dalam hal ini, yang menyebabkan benda bergerak kembali ke posisi semula
adalah gaya total atau torsi total yang muncul setelah benda bergerak. Untuk
memudahkan pemahamanmu, cermati contoh di bawah.
Contoh 1 :
Amati gambar di bawah. Sebuah bola
berwarna biru digantung dengan seutas tali. Mula-mula benda berada dalam
keseimbangan statis/benda diam (gambar 1). Setelah didorong, benda bergerak ke
kanan (gambar 2). Sekuat apapun kita mendorong atau menarik bola, bola akan
kembali lagi ke posisi semula setelah puas bergerak.
Sebagaimana tampak pada gambar, titik berat bola berada di bawah titik tumpuh. Untuk kasus seperti ini,
bola atau benda apapun yang digantung selalu berada dalam keseimbangan stabil.
Amati gambar 2. Bola bergerak
kembali ke posisi seimbang akibat adanya gaya total yang bekerja pada bola (w
sin teta). Gaya tegangan tali (T) dan komponen gaya berat yang sejajar dengan
tali (w cos teta) saling melenyapkan, karena kedua gaya ini memiliki besar yang
sama tapi arahnya berlawanan.
Contoh 2 :
Sebuah bola berada dalam sebuah
mangkuk besar. Mula-mula bola berada dalam keadaan diam (gambar 1). Setelah
digerakkan, bola berguling ria ke kanan (gambar 2).
Perhatikan diagram gaya yang bekerja
pada bola (gambar 2). Komponen gaya berat yang tegak lurus permukaan mangkuk (w
cos teta) dan gaya normal (N) saling melenyapkan, karena besar kedua gaya ini
sama dan arahnya berlawanan. Bola bergerak kembali ke posisinya semula akibat
adanya komponen gaya berat yang sejajar dengan permukaan mangkuk (w sin teta).
w sin teta merupakan gaya total yang berperan menggulingkan bola kembali ke
posisi seimbang.
Contoh ini juga menunjukkan bahwa
bola berada dalam keseimbangan stabil, karena setelah bergerak, bola kembali
lagi ke posisinya semula.
Contoh 3 :
Mula-mula benda berada dalam
keseimbangan statis / benda diam (gambar 1). Seperti yang tampak pada gambar 1,
jumlah gaya total yang bekerja pada benda = 0. Pada benda hanya bekerja gaya
berat (w) dan gaya normal (N), di mana besar gaya normal = besar gaya berat.
Karena arahnya berlawanan, maka kedua gaya ini saling melenyapkan.
Gambar 2 menunjukkan posisi benda
setelah di dorong. Perhatikan posisi titik berat dan titik tumpuh. Jika posisi
titik berat masih berada di sebelah kiri titik tumpuh, maka benda masih bisa
kembali ke posisi semula. Benda bisa bergerak kembali ke posisi semula akibat
adanya torsi total yang dihasilkan oleh gaya berat. Dalam hal ini, titik tumpuh
berperan sebagai sumbu rotasi.
Bagaimana kalau benda terangkat ke
kiri seperti yang ditunjukkan gambar 3 ? Kasusnya mirip seperti ketika benda
terangkat ke kanan (gambar 2). Perhatikan posisi titik berat dan titik tumpuh.
Benda masih bisa kembali ke posisi semula karena titik berat berada di sebelah
kanan titik tumpuh. Torsi total yang dihasilkan oleh gaya berat menggerakkan
benda kembali ke posisi semula (Titik tumpuh berperan sebagai sumbu rotasi)
Untuk kasus seperti ini, biasanya
benda tetap berada dalam keseimbangan stabil kalau setelah bergerak, titik
berat benda tidak melewati titik tumpuh. Minimal titik berat tepat berada di
atas titik tumpuh. Untuk memahami hal ini, amati gambar di bawah.
Misalnya mula-mula benda diam. Benda
akan kembali ke posisi semula jika setelah didorong, posisi benda condong ke
kanan seperti ditunjukkan gambar 1 atau gambar 2. Dalam hal ini, titik berat
benda masih berada di sebelah kiri titik tumpuh atau titik berat
tepat berada di atas titik tumpuh. Untuk kasus seperti ini, benda masih
berada dalam keseimbangan stabil.
Sebaliknya, apabila setelah didorong
dan bergerak, titik berat benda berada di sebelah kanan titik tumpuh, maka
benda tidak akan kembali ke posisi semula lagi, tetapi terus berguling ria ke
kanan/benda terus bergerak menjahui posisi semula (gambar 3). Untuk kasus
seperti ini, benda tidak berada dalam keseimbangan stabil lagi.
Perhatikan gambar di bawah.
Persoalannya mirip dengan contoh sebelumnya, bedanya benda bergerak ke kiri.
Benda berada dalam keseimbangan stabil (benda masih bisa bergerak kembali ke
posisi seimbang), jika setelah bergerak, titik berat benda berada di sebelah
kanan titik tumpuh (gambar 1) atau titik berat benda tepat berada di atas titik
tumpuh (gambar 2). Sebaliknya, jika setelah didorong dan bergerak, titik berat
berada di sebelah kiri titik tumpuh, maka benda tidak akan kembali ke posisi
semula, tapi terus berguling ria ke kiri. Jika kasusnya seperti ini, benda
tidak berada dalam keseimbangan stabil. Benda berada dalam keseimbangan labil/tidak
stabil.
Pada umum, jika titik berat benda
berada di bawah titik tumpuh, maka benda selalu berada dalam keseimbangan
stabil. Sebaliknya, apabila titik berat benda berada di atas titik tumpuh,
keseimbangan benda menjadi relatif. Benda bisa berada dalam keseimbangan
stabil, benda juga bisa berada dalam keseimbangan labil. Batas maksimum
keseimbangan stabil (benda masih bisa bergerak kembali ke posisi semula)
adalah ketika titik berat tepat berada di atas titik tumpuh. Hal ini disebabkan
karena gaya normal yang mengimbangi gaya gravitasi masih berada dalam daerah
kontak, sehingga torsi yang dikerjakan gaya berat bisa mendorong benda kembali
ke posisi semula. Kalau titik berat sudah melewati titik tumpuh, maka torsi
yang dikerjakan oleh gaya berat akan membuat benda bergerak lebih jauh lagi.
B. Keseimbangan Labil Atau
Tidak Stabil
Sebuah benda dikatakan berada dalam
keseimbangan labil atau tidak stabil apabila setelah bergerak, benda bergerak
lebih jauh lagi dari posisinya semula. Biar lebih paham, perhatikan contoh di
bawah.
Sebuah balok mula-mula diam (gambar
1). Setelah ditabrak tikus, balok tersebut bergerak alias mau tumbang ke tanah
(gambar 2). Amati posisi titik berat dan titik tumpuh. Posisi titik berat
berada di sebelah kanan titik tumpuh. Adanya torsi total yang dihasilkan oleh
gaya berat (w) membuat balok bergerak semakin jauh dari posisinya semula
(gambar 3). Titik tumpuh berperan sebagai sumbu rotasi.
Contoh 2 :
Sebuah bola, mula-mula sedang diam
di atas pantat wajan yang dibalik (gambar 1). Setelah ditiup angin, bola
bergerak ke kanan (gambar 2). Amati gaya-gaya yang bekerja pada bola tersebut.
Komponen gaya berat yang tegak lurus permukaan wajan (w cos teta) dan
gaya normal (N) saling melenyapkan karena kedua gaya ini mempunyai besar yang
sama tapi arahnya berlawanan. Btw, pada bola bekerja juga komponen gaya berat
yang sejajar permukaan wajan (w sin teta). w sin teta merupakan
gaya total yang menyebabkan bola terus berguling ria ke bawah menjahui
posisinya semula.
C. Keseimbangan Netral
Sebuah benda dikatakan berada dalam
keseimbangan netral jika setelah digerakkan, benda tersebut tetap diam di
posisinya yang baru (benda tidak bergerak kembali ke posisi semula; benda juga
tidak bergerak menjahui posisi semula).
Contoh 1 :
Amati gambar di bawah. Bola berada
di atas permukaan horisontal (bidang datar). Jika bola didorong, bola akan
bergerak. Setelah bergerak, bola tetap diam di posisinya yang baru. Dengan kata
lain, bola sudah malas balik ke posisinya semula; bola juga malas bergerak
lebih jauh lagi dari posisinya semula.
Contoh 2 :
Ini gambar sebuah silinder (drum
raksasa yang dicat biru). Silinder berada di atas permukaan bidang datar.
Kasusnya sama seperti bola di atas. Jika didorong, silinder akan berguling ria.
setelah tiba di posisinya yang baru, silinder tetap diam di situ. Si silinder
dah malas jalan-jalan. Pingin bobo, katanya
Agar dirimu semakin paham, silahkan
melakukan percobaan kecil-kecilan. gunakan benda yang bentuknya mirip dengan
benda – benda di atas.
Berdasarkan penjelasan panjang lebar
di atas, ada beberapa hal yang dapat disimpulkan
Pertama, jika titik berat benda berada di bawah titik tumpuh,
maka benda selalu berada dalam keseimbangan stabil (benda masih bisa bergerak
kembali ke posisi semula setelah puas jalan-jalan). Contohnya adalah ketika
sebuah benda digantung dengan tali. Untuk kasus seperti ini, titik berat benda
selalu berada di bawah titik tumpuh (titik tumpuh berada di antara tali dan
tiang penyanggah).
Kedua, jika titik berat benda berada di atas titik tumpuh,
keseimbangan bersifat relatif. Benda bisa berada dalam keseimbangan stabil,
benda juga bisa berada dalam keseimbangan labil/tidak stabil. Perhatikan gambar
di bawah. Apabila setelah didorong, posisi benda seperti yang ditunjukkan pada
gambar 1, benda masih bisa kembali ke posisi semula (benda berada dalam
keseimbangan stabil). Sebaliknya, apabila setelah didorong, posisi benda
seperti yang ditunjukkan gambar 2, benda tidak bisa kembali ke posisi semula.
Benda akan terus berguling ria ke kanan (benda berada dalam keseimbangan
tidak stabil/labil)
Ketiga, keseimbangan benda sangat bergantung pada bentuk/ukuran
benda. Benda yang kurus dan langsing berada dalam keseimbangan tidak stabil
jika posisi berdiri benda tersebut tampak seperti yang ditunjukkan gambar 1.
Alas yang menopang benda tidak lebar. Ketika disentuh sedikit saja, benda
langsung tumbang. Perhatikan posisi tiik berat dan titik tumpuh. Sebaliknya,
benda yang gemuk lebih stabil (lihat gambar 2). Alas yang menopang benda
lumayan lebar. Setelah bergerak, titik beratnya masih berada di sebelah kiri
titik tumpuh, sehingga benda masih bisa kembali ke posisi semula.
Keempat, keseimbangan benda tergantung pada jarak titik berat dari
titik tumpuh. Jika posisi berdiri benda seperti pada gambar 1, benda
berada dalam keseimbangan tidak stabil. Angin niup dikit aja, benda langsung
berguling ria. bandingkan dengan contoh benda kurus sebelumnya.
Sebaliknya, jika posisi benda tampak
seperti pada gambar 2, benda berada dalam keseimbangan stabil. Kata si benda,
daripada berdiri mending bobo saja. biar kalau ada tikus yang nabrak, diriku
tidak ikut-ikutan tumbang. Sekarang perhatikan jarak antara titik berat dan
titik tumpuh. Ketika benda berdiri (gambar 1), jarak titik berat dan titik
tumpuh lumayan besar. Ketika benda bobo (gambar 2), jarak antara titik berat
dan titik tumpuh sangat kecil.
Kita bisa menyimpulkan bahwa
keseimbangan benda sangat bergantung pada jarak titik berat dari titik tumpuh.
Semakin jauh si titik berat dari si titik tumpuh (gambar 1), keseimbangan benda
semakin tidak stabil. Sebaliknya, semakin dekat si titik berat dari si titik
tumpuh (gambar 2), keseimbangan benda semakin stabil.
6. PENYELESAIAN MASALAH
KESEIMBANGAN BENDA TEGAR
Contoh Soal 1 :
Sebuah benda bermassa 10 kg
digantungkan pada seutas tali (lihat gambar di bawah). Tentukan tegangan tali.
(g = 10 m/s2)
Panduan Jawaban :
Langkah 1 : menggambarkan diagram
gaya gaya yang bekerja pada benda
Langkah 2 : menumbangkan soal
Perhatikan diagram gaya di atas :
Pada benda hanya bekerja gaya berat
(w) dan gaya tegangan tali (T) pada arah vertikal. Sesuai dengan
kesepakatan bersama, gaya bernilai
positif jika arahnya menuju sumbu y positif, sedangkan gaya bernilai
negatif jika arahnya menuju sumbu y
negatif.
Syarat sebuah benda berada dalam
keadaan seimbang (untuk arah vertikal / sumbu y) :
Σ Fy = 0
T −
w = 0
T −
mg = 0
T =
mg
T =
(10kg)(10m/ s 2 )
T =100kgm/
s 2 =100N
Gaya tegangan tali = 100 N.
Contoh Soal 2 :
Dua benda, sebut saja benda A (10
kg) dan benda B (20 kg), diletakkan di atas papan kayu (lihat gambar di bawah).
Panjang papan = 10 meter.
Jika benda B diletakkan 2 meter dari
titik tumpuh, pada jarak berapakah dari titik tumpuh benda A harus diletakkan,
sehingga papan berada dalam keadaan seimbang?
(g = 10 m/s2)
Panduan Jawaban :
Langkah 1 : menggambarkan diagram
gaya-gaya yang bekerja pada benda
Langkah 2 : menumbangkan soal
Perhatikan diagram di atas. Gaya
yang bekerja pada papan adalah gaya berat benda B (FB), gaya berat benda A (FA),
gaya berat papan (w papan) dan gaya normal (N). Titik hitam (sebelah atasnya w
papan), merupakan titik tumpuh. Titik tumpuh berperan sebagai sumbu rotasi.
Gaya berat papan (w papan) dan gaya
normal (N) berhimpit dengan titik tumpuh / sumbu rotasi sehingga lengan gaya
nya nol. w papan dan N tidak dimasukkan dalam perhitungan.
Torsi 1 = Torsi yang dihasilkan oleh
gaya berat benda B (torsi bernilai positif)
B B = F l 1 τ
( )(2 ) 1 τ = mg m
((20 )(10 / 2 )(2 )
1 τ = kg m s m
(200 / 2 )(2 )
1 τ = kgm s m
2 2
1 τ = 400kgm / s
Torsi 2 = Torsi yang dihasilkan oleh
gaya berat benda A (torsi bernilai negatif)
A A − = F l 2 τ
((10 )(10 / 2 )(x )
2 −τ = kg m s x
(100 / 2 )( )
2 −τ = kgm s x
Papan berada dalam keadaan seimbang
jika torsi total = 0.
Στ = 0
τ1 −τ2 =
400kgm2 / s 2 − (100kgm/
s 2 )(x) = 0
400kgm2 / s 2 = (100kgm/
s 2 )(x)
x = 400kgm2/s2 / 100kgm/s2
x = 4 m
Agar papan berada dalam keadaan
seimbang, benda A harus diletakkan 4 meter dari titik tumpuh.
Contoh Soal 3 :
Sebuah kotak bermassa 100 kg
diletakkan di atas sebuah balok kayu yang disanggah oleh 2 penopang (lihat
gambar di bawah). Massa balok = 20 kg dan panjang balok = 20 meter. Jika kotak
diletakkan 5 meter dari penopang kiri, tentukkan gaya yang bekerja pada setiap
penopang tersebut.
Panduan Jawaban :
Langkah 1 : menggambarkan diagram
gaya gaya yang bekerja pada benda
Catatan :
Perhatikan gambar di atas. Pada alas
kotak juga bekerja gaya normal (N) yang arahnya ke atas. Gaya normal ini
berperan sebagai gaya aksi. Karena ada gaya aksi, maka timbul gaya reaksi yang
bekerja pada balok kayu. Kedua gaya ini memiliki besar yang sama tapi
berlawanan arah (kedua gaya saling melenyapkan). Karenanya kedua gaya itu tidak
di gambarkan pada diagram di atas..
Keterangan diagram :
F1 = gaya yang diberikan penopang (sebelah
kiri) pada balok
F2 = gaya yang diberikan penopang
(sebelah kanan) pada balok
w kotak = gaya berat kotak
w balok = gaya berat balok (bekerja
pada titik beratnya. Titik berat balok berada ditengah tengah)
Langkah 2 : menumbangkan soal
Pada persoalan di atas terdapat 2
titik tumpuh, yakni titik tumpuh yang berada disekitar titik kerja F1 dan titik
tumpuh yang berada di sekitar titik kerja F2. Kita bisa memilih salah satu
titik tumpuh sebagai sumbu rotasi… Terserah kita, mau pilih titik tumpuh di bagian
kiri (sekitar titik kerja F1) atau bagian kanan (sekitar titik kerja F2).
Hasilnya sama saja…
Misalnya kita pilih titik tumpuh di
sekitar titik kerja F2 (bagian kanan) sebagai sumbu rotasi. Karena F2 berada di
sumbu rotasi, maka lengan gaya untuk F2 = 0 (F2 tidak menghasilkan torsi).
Sekarang mari kita cari setiap torsi
yang dihasilkan oleh masing masing gaya (kecuali F2).
Torsi 1 :
Torsi yang dihasilkan oleh F1. Arah
F1 ke atas sehingga arah rotasi searah dengan putaran jarum jam. Karenanya
torsi bernilai negatif
−τ1 = F1 20m
Torsi 2 :
Torsi yang dihasilkan oleh gaya
berat kotak (w kotak). Arah w kotak ke bawah sehingga arah rotasi berlawanan
dengan arah putaran jarum jam. Karenanya torsi bernilai positif.
2 τ = (wkotak)(15m)
2 τ = (MassaKotak) (g) (15m)
2 τ = (100kg )(10m /s 2 )(15m )
2 τ =15000kgm / s
Torsi 3 :
Torsi yang dihasilkan oleh gaya
berat balok (w balok). Arah w balok ke bawah sehingga arah rotasi
berlawanan dengan arah putaran jarum
jam. Karenanya torsi bernilai positif.
( )(10 ) 3 τ = (wbalok)(10m)
( )( )(10 ) 3 τ = (MassaBalok)
(g) (10m)
3 τ = (20kg)(10m /s 2 )(10m )
3 τ = 2000kgm / s
Torsi Total :
Benda berada dalam keadaan seimbang,
jika torsi total = 0 (syarat 2 keseimbangan benda tegar).
Στ = 0
τ3 +τ2 −τ1 = 0
15000 kgm2 / s 2
+ 2000 kgm2 / s 2 − (F1)(20 m ) = 0
17000 kgm2 /s 2 − (F1)(20
m ) = 0
17000 kgm2 /s 2
= (F1)(20 m )
F1
= 17000 kgm 2 /s 2 / 20m
F1
= 850 kgm /s 2
Besarnya gaya yang bekerja pada
penopang sebelah kiri = 850 kg m/s2 = 850 N
Sekarang kita hitung gaya yang bekerja
pada penopang kanan… Benda berada dalam keseimbangan, jika gaya total = 0
(syarat 1 keseimbangan benda – benda dianggap partikel). Catatan : gaya yang
berarah ke atas bernilai positif sedangkan gaya yang arahnya ke bawah bernilai
negative
Karena gaya2 di atas hanya bekerja
pada arah vertikal (sumbu y), maka secara matematis, syarat 1 keseimbangan
dirumuskan sebagai berikut :
Σ Fy = 0
F1
− wKotak − wBalok + F2 = 0
850 kgm / s 2 − (100
kg )(10 m / s 2 ) − (20 kg)(10 m / s 2 )
+ F2 = 0
850 kgm / s 2 − (1000
kgm /s 2) − (200 kgm / s2 ) + F 2 =
0
−350 kgm / s 2+ F2
= 0
F2
= 350kgm/ s2
Ternyata besarnya gaya yang bekerja
pada penopang sebelah kanan =
350 kg m/s2 = 350 N
Contoh Soal 4 :
Sebuah papan iklan yang massanya 50
kg digantung pada ujung sebuah batang besi yang panjangnya 5 meter dan massanya
10 kg (amati gambar di bawah). Sebuah tali dikaitkan antara ujung batang besi
dan ujung penopang. Tentukan gaya tegangan tali dan gaya yang dikerjakan oleh
penopang pada batang besi…..
Panduan Jawaban :
Langkah 1 : menggambarkan diagram
gaya-gaya yang bekerja pada benda
Keterangan diagram :
Fx = Gaya yang dikerjakan oleh
penopang pada batang besi (komponen horisontal alias sumbu x)
Fy = Gaya yang dikerjakan oleh
penopang pada batang besi (komponen vertikal alias sumbu y)
w batang besi = gaya berat batang
besi (terletak di tengah-tengah si batang besi)
w papan iklan = gaya berat papan
iklan
Tx = gaya tegangan tali (komponen
horisontal alias sumbu x)
Ty = gaya tegangan tali (komponen
vertikal alias sumbu y)
Langkah 2 : menumbangkan soal
Gaya Fx dan Fy tidak diketahui. Oleh
karena itu, alangkah baiknya kita pilih titik A sebagai sumbu rotasi. karena
berhimpit dengan sumbu rotasi maka lengan gaya untuk Fx dan Fy = 0 (tidak ada
torsi yang dihasilkan).
Torsi 1 :
Torsi yang dihasilkan oleh gaya
berat batang besi. Arah w batang besi ke bawah, sehingga arah rotasi searah
dengan putaran jarum jam (Torsi bernilai negatif). Massa batang besi = 10 kg
dan g = 10 m/s2. Titik kerja gaya berada pada jarak 2,5 meter dari
sumbu rotasi. Arah/garis kerja gaya berat tegak lurus dari sumbu rotasi (90o)
Torsi 2 :
Torsi yang dihasilkan oleh gaya
berat papan iklan. Arah w papan iklan ke bawah sehingga arah rotasi searah
dengan arah putaran jarum jam. Karenanya torsi bernilai negatif. Massa papan
iklan = 50 kg dan g = 10 m/s2. Titik kerja gaya berada pada jarak 4
meter dari sumbu rotasi. Arah/garis kerja gaya berat tegak lurus dari sumbu
rotasi (90o).
Torsi 3 :
Torsi yang dihasilkan oleh gaya
tegangan tali untuk komponen horisontal / sumbu x (Tx). Titik kerja gaya
tegangan tali berada pada jarak 5 meter dari sumbu rotasi. Perhatikan arah Tx
pada diagram di atas…. Arah Tx sejajar sumbu rotasi (0o)
Torsi 4 :
Torsi yang dihasilkan oleh gaya
tegangan tali untuk komponen vertikal / sumbu y (Ty). Perhatikan arah Tx pada
diagram di atas…. Arah Ty tegak lurus sumbu rotasi (90o). Titik
kerja gaya tegangan tali berada pada jarak 5 meter dari sumbu rotasi. Karena
arah gaya ke atas, maka arah rotasi berlawanan dengan arah putaran jarum jam
(Torsi bernilai positif).
Torsi Total :
Benda berada dalam keadaan seimbang,
jika torsi total = 0 (syarat 2 keseimbangan benda tegar).
Gaya tegangan tali untuk komponen y
= 450 kg m/s2 = 450 N
Kita bisa langsung menentukan Gaya
tegangan tali untuk komponen x (Tx). Perhatikan lagi diagram di atas. Tali
membentuk sudut 30o terhadap batang besi. Karenanya besar tegangan
tali untuk sumbu x (Tx) dan sumbu y (Ty) bisa ditentukan dengan rumus sinus dan
kosinus…
Gaya tegangan tali untuk komponen x
(Tx) = 783 kg m/s2 = 783 N
Gaya yang diberikan penopang pada
batang besi berapa-kah ?
Sekarang kita hitung gaya yang
bekerja pada penopang… Benda berada dalam keseimbangan, jika gaya total = 0
(syarat 1 keseimbangan benda).
Contoh Soal 5 :
Sebuah benda digantungkan pada kedua
tali seperti tampak pada gambar di bawah. Jika massa benda = 10 kg, tentukan
gaya tegangan kedua tali yang menahan benda tersebut. (g = 10 m/s2)
Panduan Jawaban :
Langkah 1 : menggambarkan diagram
gaya-gaya yang bekerja pada benda
Keterangan gambar :
w = gaya berat benda = mg = (10
kg)(10 m/s2) = 100 kg m/s2
T1 = gaya tegangan tali
(1)
T1x = gaya tegangan tali
(1) pada sumbu x = T1 cos 45o = 0,7 T1
T1y = gaya tegangan tali
(1) pada sumbu y = T1 sin 45o = 0,7 T1
T2 = gaya tegangan tali
(2)
T2x = gaya tegangan tali
(2) pada sumbu x = T2 cos 45o = 0,7 T2
T2y = gaya tegangan tali
(2) pada sumbu y = T2 sin 45o = 0,7 T2
Langkah 2 : menumbangkan soal
Sebuah benda berada dalam keadaan
seimbang, jika gaya total yang bekerja pada benda = 0 (syarat 1). Terlebih
dahulu kita tinjau komponen gaya yang bekerja pada arah vertikal (sumbu y) :
Kita oprek lagi persamaan 1.
Karena T1 = T2,
maka T2 = 71,4 kg m/s2.
1 komentar:
Yup jawaban tugas kelas=r juga akhirnya :D haha thanks brooo buat postingannya membantu banget... jangan lupa visit www.ipb.ac.id
Posting Komentar